PII: S0040-4039(96)01808-4 # A New Approach to Polyfluoroalkyl Imidoyl Iodide ### Hong-Bin Yu and Wei-Yuan Huang* Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai, 200032, China Abstracts: Polyfluoroalkyl imidoyl iodide were prepared by reaction of polyfluoroalkyl iodide with N-aryl isocyanide in the presence of sulfinatodehalogenation reagent (Na₂S₂O₄/Na₂CO₃). Copyright © 1996 Elsevier Science Ltd Recently much attention has been paid to the development of new methodologies for the syntheses of many kinds of fluorine-containing building blocks, due in part to the unique biological and medicinal properties imparted by fluorine substitution.¹ Among them, the fluorinated imidoyl halides, especially the N-aryl trifluoroacetmidoyl halide, have considerable value toward the syntheses of fluoroalkyl or trifluoromethyl substituted heteroaromatic compounds.² This building block can be regarded as the corresponding trifluoroacetimidoyl carbocations, carbanions or radical intermediates.^{2,3} However, the syntheses of trifluoromethylated or per(poly)fluoroalkylated imidoyl halides have been quite limited so far.⁴ During our investigations on the radical addition of polyfluoroalkyl halide to double or triple bond by sulfinatodehalogenation reagent (Na₂S₂O₄/NaHCO₃ or Na₂CO₃), it was found that the polyfluoroalkyl radical can easily reacted with alkene, alkyne, aromatic ring to give versatile fluorinated organic compounds or intermediates for further chemical conversions.⁵ In addition, it has been known that radicals add to isocyanide to form imidoyl radicals, ^{6,7} or α-stannoimidoyl radicals⁸ which have been demonstrated to have strong synthetic potentials for inter- and intramolecular carbon-carbon bond formation. This situation prompts us to report herein our work on the synthesis of the title compounds by reaction of R_FI with N-aryl isocyanide in a direct and mild condition. ## Scheme 1 Using the Na₂S₂O₄/Na₂CO₃ reagent system (Scheme 1), R_FI (2) can easily generate R_F which then reacted with the isocyanide at 10-15°C during 40-60 minutes to provide the corresponding imidoyl iodide. The yields seemed to be affected slightly by the electronic effects of substituents on the aromatic nucleus in the cases examined so far (Table 1). Aryl isocyanides with o- or p-substituted electron donating group gave high yields. A volumn ratio 4:3 of CH₃CN and H₂O gave satisfactory results. However, when the reaction was carried out with NaHCO₃ instead of Na₂CO₃, the reaction took a much longer time with the decomposition of isocyanide. Lower temperature prolonged the reaction time and a higher temperature resulted in the production of R_FSO₂Na. The optimal reaction temperature is 10-15°C. In this condition, the reaction can be run on 30mmol | entry | R | $R_{\rm F}$ | time | Product/Yieldsb | entry | R | $R_{\rm F}$ | time | Product/Yields | |-------|--------------------------|-------------|------|-----------------|-------|--------------------------|-------------|------|----------------| | 1 | p-CH ₃ O (2a) | 3a | 40 | 1aa/92 | 9 | p-Cl (2e) | 3a | 45 | 1ea/61 | | 2 | p-CH ₃ O (2a) | 3b | 40 | 1ab /91 | 10 | p-Cl (2e) | 3b | 45 | 1eb/67 | | 3 | p-CH ₃ (2b) | 3a | 40 | 1ba/86 | 11 | o-Cl (2f) | 3a | 45 | 1fa/68 | | 4 | p-CH ₃ (2b) | 3b | 40 | 1bb/93 | 12 | o-Cl (2f) | 3b | 45 | 1fb/73 | | 5 | p-I (2c) | 3a | 45 | 1ca/74 | 13 | o-Br (2g) | 3a | 45 | 1ga/72 | | 6 | p-I (2c) | 3b | 45 | 1cb/78 | 14 | o-Br (2g) | 3b | 45 | 1gb/67 | | 7 | o-I (2d) | 3a | 45 | 1da/72 | 15 | p-CH ₃ O (2a) | 3c | 60 | 1ac/35 | | 8 | o-I (2d) | 3b | 45 | 1db/83 | | | | | | Table 1. Radical Addition of R_FI to N-aryl Isocyanide a: reaction time (minutes); b: isolated yields(%) based on compound 2. scale. In the case of CF₃I ⁹ the yield of trifluoromethylated imidoyl iodide was not satisfactory. Furthermore, the polyfluoroalkylated imidoyl iodide is more stable than the trifluoromethyl analog at room temperature. Thus, compound 1aa or 1ab can be stored in a sealed bottle at room temperature without deterioration whereas compound 1ac should be stored in refrigerator. #### Representative Synthetic Procedure: N-aryl isocyanide were prepared according to the literature. ^{10a} A solution of 2a (133mg, 1.0mmol) and 3a (289mg, 1.1mmol) in CH₃CN (2ml) and H₂O (1.5ml) was cooled to 10-15°C and treated with a mixture of powdered Na₂S₂O₄ (230mg, 1.32mmol) and Na₂CO₃ (140mg, 1.32mmol) with stirring. Five minutes later, the color of the reaction mixture turned to brown. After 40min, the mixture was quenched with 20ml H₂O and extracted with ethyl ether (20ml×3). The organic layer was washed with brine and then dried (Na₂SO₄) and concentrated. The crude product was purified by flash column chromatography^{10b} (silica gel, petroleum ether elution(b.p.60-90°C)) to give 1aa (364mg, 92%) as a pale yellow oil. Anal. calcd. for C₁₀H₇F₄ClINO: C 30.37, H 1.78, N 3.54, F 19.21%, found: C 30.20, H 1.66, N 3.59, F 19.66%; ¹H NMR(90MHz, CDCl₃) δ 6.97 (s, 4H, Ar-H), 3.83(s, 3H, CH₃O); ¹⁹F NMR(56.4MHz, CDCl₃, CFCl₃ as the external standard ^{10c}) δ 66.3(s, 2F, CF₂Cl), 103.1(s, 2F, CF₂); IR (ν cm-1) 2840, 1675-1695, 1600, 12504, 1300, 1250, 1230, 1175-1150, 1099; MS 395(M⁺, 1.66), 360(M⁺-Cl, 4.50), 268(M⁺-I, 100), 107(CH₃OAr, 18.83). In conclusion, we have described a novel reaction between R_FI and N-aryl isocyanide in the presence of Na₂S₂O₄/Na₂CO₃ reagent system. It not only gives a new synthetic method of fluorinated imidoyl iodide which can be a useful building block in organic synthesis but also broadens the scope of the sulfinatodehalogenation. # REFERENCES AND NOTES: - Filler, R.; Kobayashi, Y.; Yagupolskii, L. M.; Organofluorine Compounds in Medicinal Chemistry and Biomedical Application, Amsterdam, Elsevier, 1993; Welch, J. T.; Tetrahedron, 1987, 43, 3123-3197. - 2. Uneyama, K.; J. Syn. Org. Chem. Jpn. 1995, 53, 43-68. - Dan-oh, Y.; Matta, H.; Uemura, J.; Watanabe, H.; Uneyama, K.; Bull. Chem. Soc. Jpn. 1995, 68, 1497-1507. - Norris, W. P.; Jonassen, H. B.; J. Org. Chem. 1962, 27, 1449-1451; Tordeux, M.; Wakselman, C.; Tetrahedron, 1981, 37, 315-318; Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K.; J. Org. Chem., 1993, 58, 32-35. - Huang, W.-Y.; Huang, B.-N.; Hu, C.-M.; J. Fluorine Chem. 1983, 23, 193-204; Huang, W.,-Y.; Wang W., Huang, B.-N.; Acta Chimica Sinica, 1985, 43, 409-410; Huang, W.-Y., Lü, L.; Shang Y.-F.; Chinese J. Chem., 1990, 4, 350-354; Huang, W.-Y.; Lü, L., Chinese J. Chem., 1991, 9, 174-180; Huang, W.-Y., Ma, W.-P.; Wang, W.; Chinese J. Chem., 1990, 2, 175-181; Huang, W.-Y., Yu, H.-B.; Chinese Chem. Lett. 1996, 7, 425-426 - 6. Saegusa, T.; Kobayahi, S.; Ito, Y.; Yasuda, N.; J. Am. Chem. Soc. 1968, 90, 4182 - 7. Curran, D. P.; Liu H.; J. Am. Chem. Soc. 1991, 113, 2127-2132. - 8. Fukuyama, T.; Chen, X.; Peng., G.; J. Am. Chem. Soc. 1994, 116, 3127-3128. - 9. CF₃I was prepared in situ: Haszeldine, R. N.; J. Chem. Soc. 1951, 584-587. - a. Obrecht, R.; Herrmann, R.; Ugi, I.; Synthesis, 1985, 400-402. b. The silica gel column was percolated with petroleum ether containing 1% Et₃N before the flash column chromatography. c. positive upfield.